Prediction Theory and Ergodic Spectral Decompositions
نویسندگان
چکیده
منابع مشابه
Pointwise Dimension and Ergodic Decompositions
We study the Hausdorff dimension and the pointwise dimension of measures that are not necessarily ergodic. In particular, for conformal expanding maps and hyperbolic diffeomorphisms on surfaces we establish explicit formulas for the pointwise dimension of an arbitrary invariant measure in terms of the local entropy and of the Lyapunov exponents. These formulas are obtained with a direct approac...
متن کاملDimension and Ergodic Decompositions for Hyperbolic Flows
For conformal hyperbolic flows, we establish explicit formulas for the Hausdorff dimension and for the pointwise dimension of an arbitrary invariant measure. We emphasize that these measures are not necessarily ergodic. The formula for the pointwise dimension is expressed in terms of the local entropy and of the Lyapunov exponents. We note that this formula was obtained before only in the speci...
متن کاملSpectral Theory and Limit Theorems for Geometrically Ergodic Markov Processes
Consider the partial sums {St} of a real-valued functional F (Φ(t)) of a Markov chain {Φ(t)} with values in a general state space. Assuming only that the Markov chain is geometrically ergodic and that the functional F is bounded, the following conclusions are obtained: Spectral theory: Well-behaved solutions f̌ can be constructed for the “multiplicative Poisson equation” (eP )f̌ = λf̌ , where P is...
متن کاملErgodic theorem, ergodic theory, and statistical mechanics.
This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundam...
متن کاملErgodic Theory and Number Theory
Elon Lindenstrauss was awarded the 2010 Fields Medal for his results on measure rigidity in ergodic theory, and their applications to number theory. The web page of the ICM 2010 contains the following brief description of Elon Lindenstrauss’ achievements: Lindenstrauss has made far-reaching advances in ergodic theory, the study of measure preserving transformations. His work on a conjecture of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1976
ISSN: 0091-1798
DOI: 10.1214/aop/1176996185